Exploring the Research Lifecycle of an NIH Grant with UT Library Research Support – a Faculty Development Event
Office of the VP for Research
August 12, 2020

A link to the recorded event, slides and resource contacts are included in this document.

View the [event recording](#). Below is the minute-by-minute counter:

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:13 - 3:25</td>
<td>Introduction/Lifecycle of a Grant (Janelle Hedstrom).</td>
</tr>
<tr>
<td>3:36 – 9:28</td>
<td>ORCID Identifier (Hannah Chapman Tripp).</td>
</tr>
<tr>
<td>Questions:</td>
<td></td>
</tr>
<tr>
<td>14:37</td>
<td>Can you talk more about what kind of works you're referring to in adding to ORCID? Is that just publications? Are there other things?</td>
</tr>
<tr>
<td>A:</td>
<td>That can be just publications, if you like. It can also be data (If you've published data, which can also be seen as a publication). And there's actually a linking to Publons as well, a tool that allows you to keep track of your peer review contributions.</td>
</tr>
<tr>
<td>15:54</td>
<td>How does this relate to the service Research Gate - similarity or differences, as a product - A: for scholarly communication, it's a place where scholars gather and connect with one another. Whereas tools like ORCID are really primed to allow you to be found and to create and curate a profile that you'd like folks to see in the public sphere.</td>
</tr>
<tr>
<td>31:58 – 42:44</td>
<td>Science Communication (Roxanne Bogucka).</td>
</tr>
</tbody>
</table>
NIH Grant Support from UT Libraries

- ORCID identifier
- PIVOT
- Biosketch & SciENcv
- Data Management Plans
- Science Communication
- NIH Public Access Requirements
- Data Sharing & Preservation
- Finding Help
Lifecycle of a Grant

Step 1: Generate your idea
Step 2: Find funding opportunities
Step 3: Develop your proposal
Step 4: Proposal Submission
Step 5: Administer your award
Step 6: Share your successes, research, outcomes
Step 7: Grant Close-out

Image borrowed from Northern New Mexico College: https://nnmc.edu/home/academics/office-of-the-provost/grants-office
ORCID Identifier
- 16 digit author identifier
- Include when publishing articles & submitting grants
- Required for several NIH series, recommended for all
- Establish & utilize your profile

ORCID provides a persistent digital identifier (an ORCID ID) that you own and control, and that distinguishes you from every other researcher. You can connect your ID with your professional information — affiliations, grants, publications, peer review, and more. You can use your ID to share your information with other systems, ensuring you get recognition for all your contributions, saving you time and hassle, and reducing the risk of errors.

https://guides.lib.utexas.edu/orcid
Pivot
- Database to find funding opportunities
- Features controlled vocabulary, advanced search functionality, & ability to save searches
- Create a profile
- Send new opportunities via email

https://guides.lib.utexas.edu/findfunding/pivot
Biosketches with SciENcv
- A tool to create, save, & reuse biosketches for NIH, IES & NSF
- Not a requirement for NIH
- Integrates with ORCID & My Bibliography (NCBI)
- Creates well formatted consistent biosketches
Questions?
Data Management Plans

Planning is critical, required, and will save many headaches along the way!
NIH Requirements

2003 policy – applications for more than $500k require Data Management Plan. NIH is currently moving to require DMPs for ALL applications.

- Descriptions of data to be produced
- Standards for collecting data & metadata
- How data will be shared
- Provisions for restricted data
- Provisions for reuse
- Timeline for making data publicly accessible
- Plans for long-term preservation

For more NIH requirements, go to SPARC* Tracking and Understanding Data Policies
Library Guides

Preparing a Data Management Plan
https://guides.lib.utexas.edu/c.php?g=1020955&p=7395488

Data Management for the Social Sciences
https://guides.lib.utexas.edu/datamanagesosci/planning

Research Data Services Guide
https://guides.lib.utexas.edu/c.php?g=853439&p=6318684
1. **Project, experiment, & data description**
 a. What is the data?
 b. How will it be collected?
 c. What format will it be in?
 d. How much data will be generated?
 e. Are you using someone else’s data?
 f. Who is responsible for managing the data?

2. **Documentation, organization, & storage**
 a. What documentation (metadata) will you provide to make the data understandable by others?
 b. Are you using a [metadata standard](#)?
 c. What file naming conventions will you use?
 d. Will data storage be required?
 e. What tools or software will be required to access the data?

3. **Access, sharing, & reuse**
 a. What data will be shared, when, and how?
 b. What privacy, ethical, or confidentiality concerns may arise?
 c. What plan do you have to protect and/or anonymize the data?
 d. Who hold intellectual property rights for the data?
 e. Are others allowed to reuse your data?

4. **Archiving**
 a. Where will the data be stored?
 b. How will you prepare the data for preservation?
 c. How long should the data be retained?
DMP Checklist

https://tinyurl.com/dmpchecklist
(downloadable PDF)
DMP Tool

1. Sign in with UT Austin affiliation
2. Create an account
3. View other plans from UT
4. Create plan
5. Select primary funding organization
6. Write plan
7. Share
8. Request feedback

https://dmptool.org/

Data Management Plans
Data & Safety Monitoring Plans

Required for clinical trials involving human subjects that pose a greater than minimal risk.

NIH

Library guide
https://guides.lib.utexas.edu/datamanagesosci/planning
DSMP template

https://tinyurl.com/dsmptemplate

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 PARTICIPANTS SAFETY</td>
<td>2</td>
</tr>
<tr>
<td>1.1 Potential Risks and Benefits for Participants</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Collection and Reporting of Adverse Events (AEs), Serious Adverse Events (SAEs) and Unanticipated Problems (UPs)</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Protection against Study Risks</td>
<td>2</td>
</tr>
<tr>
<td>2.0 INTERIM ANALYSIS & STOPPING RULES</td>
<td>3</td>
</tr>
<tr>
<td>3.0 DATA AND SAFETY MONITORING</td>
<td>3</td>
</tr>
<tr>
<td>3.1 Frequency of Data and Safety Monitoring</td>
<td>4</td>
</tr>
<tr>
<td>3.2 Content of Data and Safety Monitoring Report</td>
<td>4</td>
</tr>
<tr>
<td>3.3 Monitoring Body Membership and Affiliation</td>
<td>5</td>
</tr>
<tr>
<td>3.4 Conflict of Interest for Monitoring Bodies</td>
<td>5</td>
</tr>
<tr>
<td>3.5 Protection of Confidentiality</td>
<td>5</td>
</tr>
<tr>
<td>3.6 Monitoring Entity Responsibilities</td>
<td>5</td>
</tr>
</tbody>
</table>
Questions?
Science Communication
Can you compose a sentence describing the research?

This researcher is investigating X … the research question by doing Y … the research method because Z … why it matters
As highlighted in the diagram below, typical scientific communication (such as the last journal article you read or wrote) includes a lengthy background, and then describes the methods and process used with great precision. It is not until the very end of the paper that results or conclusions are reported.

Public communication flips this approach on its head: the bottom-line is the lead, followed quickly by the “so what,” and then the supporting details, as appropriate.

Scientists and the public have different communication styles. While scientists often start by placing research in a historical context, the public wants to know the key point at the start. | Adapted from Nancy Baron’s Escape from the Ivory Tower.
Science communication happens researchers share information about their work with non-experts, in ways that any audience can understand.

"Science communication is transferring critical scientific findings to various audiences with the intention of informing decision-making processes."
(SOURCE: https://jessicaisise.com/2015/06/14/science-communication/) #scicomm #sciencecommunication

"Health communication is the science and art of using communication to advance the health and well-being of people and populations." *(SOURCE: Moody College of Communications, Center for Health Communications) #healthcomm #healthcommunication

"Public engagement describes the myriad of ways in which the activity and benefits of higher education and research can be shared with the public. Engagement is by definition a two-way process, involving interaction and listening, with the goal of generating mutual benefit." *(SOURCE: https://www.publicengagement.ac.uk/about-engagement/what-public-engagement) #PublicEngagement

"Public engagement with science describes intentional, meaningful interactions that provide opportunities for mutual learning between scientists and members of the public." *(SOURCE: https://www.aaas.org/press/what-public-engagement) #PublicEngagement

"Broader impacts [of research relates to] the potential to benefit society and contribute to the achievement of specific, desired societal outcomes. ... These broader impacts may be accomplished through the research itself, through activities that are directly related to specific research projects, or through activities that are supported by but are complementary to the project." *(SOURCE: https://www.nsf.gov/od/cia/publications/Broader_Impacts.pdf) #BroaderImpacts

https://guides.lib.utexas.edu/sciencecommunication
NIH Public Access Requirements
What is the NIH Public Access Policy?

The NIH Public Access Policy ensures that the public has access to the published results of NIH-funded research. It requires investigators to submit final peer-reviewed journal manuscripts that arise from NIH funds to the digital archive PubMed Central upon acceptance for publication. To help advance science and improve human health, the Policy requires that these papers are accessible to the public on PubMed Central no later than 12 months after publication.

There are four major components of complying with the NIH Public Access Policy:

1. Determine Applicability
2. Address Copyright
3. Submit Manuscript to the NIH Manuscript Submission System (NIHMS) for Deposit into PubMed Central (PMC)
4. Show Evidence of Compliance

https://guides.lib.utexas.edu/nih-public-access/overview
Questions?
Data Sharing and Preservation
Why share your data?

- It increases the citation and impact of your work
- It helps advance science
- It’s required!

- NIH Strategic Plan for Data Science: https://datascience.nih.gov/strategicplan
Where to share your data

- Recommendations from Nature: https://www.nature.com/sdata/policies/repositories
- Texas Data Repository: https://data.tdl.org/
Best Practices for sharing your data

- Make it **FAIR** (findable, accessible, interoperable and reusable)
 - Add descriptive metadata to the repository record for your data
 - Include readme files, codebooks and glossaries
 - Use an open, preservation-friendly file type (.csv rather than .xlsx)
 - Share both raw and analyzed data
 - Share enough data for reproducibility and new knowledge creation
 - Set the least-restrictive licenses as possible

- State how you would like the data to be cited (if the repository doesn’t make that clear)

- Refer to a Data Curation Primer, when available:
 https://datacurationnetwork.org/resources/data-curation-primers/
Questions?
Finding Help
People to ask...

Your subject librarian: https://guides.lib.utexas.edu/?b=s

The UT Libraries data services team: https://www.lib.utexas.edu/research-help-support/research-data-services

Your OSP Program Specialist: https://research.utexas.edu/osp/about-osp/constituency-lists-account-assignments/#pre-award-constituency-list

Your center, college, or departmental research administration staff: https://research.utexas.edu/resources/research-development/faculty-development/research-solutions/research-administration-support-lookup/
Presenters & Panelists

- **Roxanne Bogucka**, Liaison Librarian for Health Sciences
- **Hannah Chapman Tripp**, Liaison Librarian for Biosciences
- **Elle Covington**, Liaison Librarian for Social Work and Kinesiology & Health Ed
- **Janelle Hedstrom**, Liaison Librarian for Education
- **Colleen Lyon**, Head of Scholarly Communications
Thank you!

A copy of these slides can be found in UT Box at:
https://utexas.box.com/s/fufbrkphbvs9teopbnkvxxr1z1pk3ny
Exploring NIH Research Lifecycle Support from UT Library
August 12, 2020

Presenters & Panelists:

- Roxanne Bogucka
 o Librarian for Nursing, Nutrition, Pharmacy, Public Health
 o Email: roxanne.bogucka@austin.utexas.edu
- Hannah Chapman Tripp
 o Librarian for Biology, Biomedical Engineering, Neuroscience
 o Email: hchapmantripp@austin.utexas.edu
- Elle Covington
 o Librarian for Social Work, Kinesiology & Health Education, Educational Psychology
 o Email: elle.covington@austin.utexas.edu
- Janelle Hedstrom
 o Librarian for Curriculum & Instruction, Educational Leadership & Policy, Special Education
 o Email: jhedstrom@austin.utexas.edu
- Colleen Lyon
 o Head of Scholarly Communication, UT Libraries
 o Email: c.lyon@austin.utexas.edu

Relevant Online Guides from UT Libraries:

- Disciplinary Guides and Subject Librarians
- Research Data Services
- GIS and Geospatial Data Services
- Data Management for the Social Sciences
- Preparing a Data Management Plan
- NIH Public Access Policy
- ORCID
- SciENcv